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Abstract. We investigate the effect of a static electric field on photoionization of the He atom in the ground
1S and low-lying 2S and 2P excited states. The field-affected ionization potential and photoionization cross-
section are determined from the complex eigenvalues of the time-dependent Schrödinger equation solved
by the complex rotation method in the Floquet ansatz. Accuracy of the method is enhanced by the use of
the Hylleraas basis set. For the ground state of helium, we find that the total photoionization cross-section
remains constant or decreases as a function of the DC field strength until this field reaches a certain critical
value. For the low-lying excited states, effect of the static field is similar to the ordinary DC Stark effect.

PACS. 32.80.-t Photon interactions with atoms – 32.80.Fb Photoionization of atoms and ions – 42.50.Hz
Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark
shift

1 Introduction

The effect of an external DC electric field on the process of
interaction of a two-electron atomic system and AC elec-
tromagnetic field has become a subject of intense experi-
mental and theoretical studies. For the hydrogen negative
ion, for example, there is a wealth of both experimen-
tal [1,2] and theoretical [3–5] results concerning influence
of the external DC electric field on the process of photode-
tachment.

Effect of a DC field on the photoionization from the
ground state of helium was studied in [6–8]. These authors
were interested in the photoionization cross-sections in the
region of 2lnl′ resonances. Due to the Stark mixing of the
levels in the final state, application of the external DC field
opens new photoionization channels. For example, in the
absence of the external DC field the states of 1De sym-
metry cannot be reached via the process of one-photon
ionization from the ground state. The external DC field
mixes the states of the 1De and 1Po symmetries and makes
this process possible. It was found [6] that this effect leads
to the redistribution of the photoionization rates between
various final channels. Thus, for example, the photoioniza-
tion cross-section for the 1Po channel may decrease with
the DC field, while, that for the 1De may increase. Experi-
mentally, the effect of a static electric field on the resonant
photoionization of He was recently studied [9]. This study
lead to a discovery of a propensity rule for selective double
photoexcitation of helium in DC fields [10].
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In the cited theoretical works on the resonant pho-
toionization of He, the AC field was treated perturbatively.
A convenient framework for such a treatment is provided
by the complex rotation method (CRM) [11]. Knowledge
of the eigenvalues of the complex-rotated Hamiltonian al-
lows one to construct a representation [12] for the projec-
tion operator on an interval of the continuous spectrum
of the Hamiltonian of the system. This representation can
then be used for efficient perturbative computation of the
cross-sections.

In the view of the current interest in behavior of atomic
systems in strong fields (see, e.g. [13]), non-perturbative
techniques, suitable for describing response of atomic sys-
tems to strong external fields are becoming increasingly
important.

Several approaches providing such a description for
systems with more than one electron have been pro-
posed in the literature. An approach based on the com-
bination of R-matrix and Floquet techniques [14,15]
allows to describe non-perturbatively behavior of multi-
electron atomic systems such as He [16], hydrogen nega-
tive ion [17]) or H2 molecule [18] in the presence of strong
AC fields.

Direct solution of the time-dependent Schrödinger
equation (TDSE) for systems with more than electron in
external laser field is also possible. Such procedure has
been used to study effects of strong AC field on He [19]
and molecular hydrogen [20]. An efficient method of solv-
ing the TDSE for two-electron systems has been pre-
sented in [21], allowing to consider processes of ionization
and excitation by short laser pulses in helium and nega-
tive hydrogen ion. The multiconfiguration time-dependent
Hartree-Fock approach, allowing to describe behavior of a
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few-electron system in the presence of the strong laser field
was proposed recently [22]. The above methods provide,
in principle, a comprehensive non-perturbative description
of the behavior of the systems with at least two electrons
in the presence of strong external AC fields.

Providing such a description for a multielectron sys-
tem in the case of the external DC field requires a dif-
ferent set of ideas. One can try, for example, to combine
the existing electronic structure theories (based e.g., on
the single- or multi-configuration Hartree-Fock methods)
with the methods suitable for the description of the de-
caying states [23,24]. This can be done, for example, in
the spirit of the Feshbach projection operators formalism
by introducing complementary Q and P spaces [25]. Al-
ternatively, to determine total ionization rates and level
shifts in multielectron systems in the presence of exter-
nal DC field, one may use the complex rotation method.
Justification of this method for the case of an atom in
the presence of external DC field has been laid out in the
pioneering works [26–28]. Once the validity of the CRM
in this problem has been established, it became possible
to use highly accurate matrix methods from the theory of
the bound state calculations. Positions and widths of the
Stark resonances in various systems (such as He, H−, Ps−)
could thus be computed with accuracy comparable to the
accuracy of the bound state calculations [29,30]. Further
development these ideas received in the work [31] where
the so-called exterior complex rotation method has been
applied for the theoretical study of the ionization rates
and Stark shifts of molecular hydrogen in external DC or
low-frequency laser fields.

In the present paper we shall try to describe a two-
electron system non-perturbatively in the presence of both
AC and DC electric fields. As a theoretical tool, we also
employ the CRM, albeit in a slightly different guise. We
shall use the so-called Floquet ansatz to represent the
wave function of the atom in the external monochromatic
AC field. The resulting set of equations is solved with the
use of the CRM by means of ordinary variational tech-
niques. In this approach, both AC and DC fields are con-
sidered non-perturbatively.

A completely rigorous mathematical proof of the valid-
ity of the CRM in the present context is still lacking [32].
There is, however, a strong evidence supported by numer-
ous successful applications to atomic systems like hydro-
gen [33–36], that the CRM in its usual form applies to the
situations in which the AC electromagnetic field is present.

The net gain in applying the combination of the CRM
and Floquet methods to the two-electron systems in ex-
ternal fields is the possibility to treat both the AC and DC
fields non-perturbatively. This is an important advantage,
especially in the view of the current interest in behavior of
atomic systems in strong fields (see, e.g. [13]). To achieve
this gain, however, one must overcome rather severe com-
putational problems related to the size of the target state
basis size. The obvious requirement to the basis set is an
accurate description of the field-free atomic states and the
ordinary DC Stark effect. Once this goal is achieved, the
dimension of the matrices thus obtained is to be further

increased to describe accurately the influence of the AC
field (see more details below). The overall dimension of
the problem may, therefore, make the whole approach im-
practicable. A solution of this problem is to choose the
basis so that the DC Stark effect for each Floquet block
is described as economically as possible, with the use of
the minimal number of the basis functions. The Hylleraas
basis set, well-known for its efficiency in representing field-
free atomic states [37], is a natural choice here. We might
mention also the work of [21] where this property of the
Hylleraas basis to economize the dimension of the basis
set has been used for the solution of the time-dependent
Schrödinger equation for a two-electron system placed in
external AC field.

An analogous approach to strong AC fields has been
developed in [38] where the so-called perimetric coordi-
nates have been used. The authors applied this approach
to the negative hydrogen ion in a very strong AC field. In
particular, they were able to estimate the onset of the AC
stabilization for this system. Basis functions expressed in
the perimetric coordinates (supplemented with the three
Euler angles) constitute the basis which, from the formal
point of view, is equivalent to the Hylleraas basis employed
in the present paper. There is, however, one important dif-
ference. As it was noted [38], the approach based on the
perimetric coordinates and Euler angles leads to consid-
erable problems of technical character, especially if one
attempts to construct a state with the large total angu-
lar momentum. For the strong external fields which mix
various symmetries, an account of the states of large mo-
menta can become quite important. The Hylleraas basis
set, employing spherical coordinates for both electrons, is
much easier to implement, in particular for the states with
large angular momenta.

In our recent paper [39] we applied a combination of
these techniques (CRM + Floquet + Hylleraas basis set)
to describe helium atom placed in an external AC electric
field. We have shown that the aforementioned combination
of methods allows to achieve an unprecedented accuracy
(on the level of a fraction of a percent) in determining the
total photoionization cross-sections for the helium atom.
In the present work we show how this approach can be
applied for the considerably more complicated problem of
helium atom in presence of both AC and DC electric fields.
We shall be interested in photoionization of He outside
the resonant region where a sufficiently strong external
DC field can change the ionization potential and the pho-
toionization cross-section. We shall report below results
of an accurate non-perturbative calculation of the ioniza-
tion potentials and the photoionization cross-sections of
the He atom in the ground 1S state and lower-lying 2S
and 2P singlet and triplet excited states. These param-
eters are extracted from the positions and widths of the
corresponding decaying (resonant) states of the He atom
in the presence of external DC and AC fields.

The paper is structured as follows. In Section 2 we
present the formalism, introduce the Hylleraas basis set
and outline our computational strategy. In Section 3 we
compile our numerical results for the singlet and triplet



I.A. Ivanov and A.S. Kheifets: Helium atom in presence of DC and AC electric fields 473

states. We conclude by speculating on the possible use of
the present technique for other related problems.

2 General theory

The non-relativistic Hamiltonian of the helium atom in
the presence of the external monochromatic linearly-
polarized AC electromagnetic field and the external DC
electric field can be written as:

Ĥ =
p2

1

2
+

p2
2

2
− 2

r1
− 2

r2
+

1
|r1 − r2|

+ D · (FAC cosωt + FDC), (1)

where D = r1 + r2. In the present work we adopt the
length gauge to describe interaction of the atom and the
field. We also rely on the dipole approximation so that
the quantity FAC is coordinate independent. Unless stated
otherwise, the atomic units are used throughout the paper.

The theoretical method employed below is based on
the work [33]. The time-dependent Schrödinger equation
(TDSE) allows the following set of solutions in the so-
called Floquet-Fourier ansatz [14,33,40,41].

Ψ(t) = e−iEt
∑

n

une−inwt. (2)

Substituting this expression into the TDSE one obtains a
chain of coupled equations for the coefficient functions un:

(E − T̂ − Û −D ·FDC + nω)un =
FAC ·D

2
(un−1 + un+1),

(3)
where n = 0,±1 . . ., E, T̂ and Û stand, respectively, for
the quasi-energy and the operators of kinetic and poten-
tial energy. To solve this set of equations we employ the
complex rotation method (CRM) [11,32,42–45]. Formally,
the CRM can be described as a complex transformation
of radial variables ri → rie

iθ, where θ is the so-called ro-
tation angle, parameter defining the transformation.

Under this transformation, the chain of equations (3)
is converted into

(E − T̂ e−2iθ − Ûe−iθ − D · FDCeiθ + nω)un =
FAC ·D

2
eiθ(un−1 + un+1). (4)

According to the general theory of CRM [11,42–44], the
eigenvalue problem (4) can be solved by means of varia-
tional techniques if the rotation angle θ is properly chosen.
The (complex) eigenvalues of this problem:

E = Er − i
Γ

2
(5)

provide information about the energy (Er) and the width
(or decay rate Γ ) of the atomic state in the field.

In the case of very weak DC fields, when the decay
due to the interaction with the AC field plays predomi-
nant role, the latter quantity can be related to the total

photoionization cross-section (in a.u.) by means of a well-
known relation:

σ = lim
FAC→0

8παΓω

F 2
AC

. (6)

As the limiting procedure in the last equation suggests,
this equation is valid only if it is legitimate to consider
the AC field perturbatively.

Below we shall consider the case when DC and AC
electric field vectors are parallel, this direction we choose
as the z-axis. We shall restrict our attention only to the
manifold of states with M = 0, where M is a projection
of the total orbital momentum on the quantization z-axis
(in the present set-up M is a conserved quantity).

To solve the eigenvalue problem (4) variationally we
introduce a basis set of square integrable functions |n, k〉
where the index n refers to the number of the Floquet
block and the index k denotes a particular L2 function in
the subspace of the nth block so that un =

∑

k

cnk|n, k〉.
With these notations, the set of equations (4) can be
rewritten in a matrix form as:

(
(E + nω)Rnk

n1k1
− T nk

n1k1
e−2iθ − Unk

n1k1
e−iθ

)
cnk =

FDCDn2k
n1k1

eiθcnk +
∑

n2=n±1

FACDn2k
n1k1

eiθ

2
cn2k, (7)

where it is understood that summation is carried over the
repeated k-index. Here FAC and FDC are field strengths
of the AC and DC electric fields, respectively, D is the
matrix of the operator Dz = z1 + z2, and R, T and U
stand for the overlap, kinetic energy and potential energy
matrices, respectively.

In practical calculations we must, of course, truncate
system (7), considering only a finite number of the Floquet
blocks. In the present work, we consider only intensities of
AC electromagnetic field not exceeding 0.1 a.u. For such
AC field intensities the contribution of the Floquet blocks
with |n| > 1 in equation (7) can be neglected. As usual
in the variation calculations, this statement can be ver-
ified by performing extended calculation including, e.g.,
Floquet blocks with n = ±2. Such verification has been
performed confirming the above statement. We shall give
more details of this calculation below. For the moment we
shall assume that in the region of the AC field strengths
reported here it is legitimate to retain only the Floquet
blocks with |n| ≤ 1 in the set of equations (7).

Our next step is to choose the basis set |n, k〉 in (7). We
employ the Hylleraas basis set consisting of the functions:

gn1,n2,N(r1, r2) = rn1
1 rn2

2 |r1 − r2|N
× e−ar1−br2 |l1(1)l2(2)L〉, (8)

where a, b are some constants (to be specified below), n1,
n2, N are integers and the angular part

|l1(1)l2(2)L〉 =
∑

m1m2

CLM
l1m1l2m2

Yl1m1(n1)Yl2m2(n2), (9)



474 The European Physical Journal D

represents two spherical functions (of orders l1, l2) cou-
pled to represent a state with a given total angular mo-
mentum L. Of course, basis functions (8) must be prop-
erly symmetrized with respect to exchange of the electron
coordinates. When choosing parameters in (8), we were
guided by the following rule [29,37]. All the basis func-
tions with the parameters satisfying the inequality (the
so-called Pekeris shell)

n1 + n2 + N < Nmax (10)

were included in the calculation. The parameter Nmax de-
termines the overall size of the basis. There is another
well established rule for choosing angular momenta l1, l2
in (8). For states with the natural parity, l1, l2 are best
chosen so that l1 + l2 = L. Both these criteria help to
avoid the numerical problems due to near-degeneracy of
the basis set when its dimension becomes large. Some de-
tails of the calculations of the Hamiltonian matrix with
the functions (8) are given in the Appendix.

3 Numerical results

To describe accurately the helium atom in the presence of
the DC electric field we use a sufficient number of basis
functions of S, P, D, F, G and H symmetries to represent
each Floquet block in system (7).

3.1 Singlet states

For the singlet states, the basis set satisfying the criteria
mentioned above can be constructed as follows. Each of
the parameters a, b in equation (8) was allowed to assume
two values: 1 and 0.5. This is the so-called split expo-
nential basis needed to describe accurately singly excited
states 1s2l where there are two different radial scales. For
each of the Floquet blocks in set (7) we retain all the basis
functions of 1Se, 1Po, 1De, 1Fo, 1Ge,1Ho symmetries for
which the parameter Nmax in (10) is equal to 9. Such a
choice gives us for each Floquet block a total of 260, 336,
90, 70, 53 and 30 basis functions of 1Se, 1Po, 1De, 1Fo,
1Ge and 1Ho symmetries respectively. Since we consider
only Floquet blocks with n = 0,±1, the overall dimension
of the eigenvalue problem (7) is 2517. All calculations re-
ported below have been performed using quadruple preci-
sion arithmetic.

An estimate of the accuracy of the present calcula-
tion can be inferred from the field-free case when both
the DC and AC fields are switched off. Such a calcula-
tion gives the following energies of the states of interest:
−2.90372443 a.u. (the ground state), −2.14597414 a.u.
(the 1s2s 1Se state) and −2.12384295 a.u. (the 1s2p 1Po

state). Comparison with the well-known values from the
literature [37,46] shows that we may claim an accuracy of
the order of 10−7 a.u. for the ground and 1s2p 1Po excited
states, and 10−8 a.u. for the 1s2s 1Se state. We can adopt
the larger of these numbers as a conservative estimate of
the accuracy our basis gives in the field-free case. Such

an accuracy may not seem to be very impressive by the
usual standards of the Hylleraas basis calculations but,
as we mentioned above, we have to find a compromise
between the accuracy and computational time since in-
clusion of several Floquet blocks increases the dimension
of the eigenvalue problem (7). The quoted estimate of the
accuracy will be found sufficient for the accurate calcula-
tion of the combined effects of DC and AC fields on these
states.

Before proceeding to calculations with both the DC
and AC fields included (that is, to the calculation includ-
ing several Floquet blocks in (7)), we have yet to make sure
that our basis describes accurately the ordinary DC Stark.
To verify this, we put FAC = 0 in (7), restricted the system
of equations to only one Floquet block (with n = 0), and
diagonalized the resulting eigenvalue problem. The com-
position of the only Floquet block with n = 0 was the same
as we described above. The results which this procedure
gave for the positions and widths of the ground state and
the excited 1s2s 1Se, 1s2p 1Po states agree very well with
the known literature values. For example, for the DC field
strength FDC = 0.05 a.u. we obtained the ground state en-
ergy of −2.90546493 a.u. Comparing this value with the
quoted above field-free result obtained in the same basis,
we find a level shift of 0.00174 a.u. This result is to be
compared with the value of 0.00175 a.u. obtained in the
work [25]. For the DC field strength FDC = 0.15 a.u. we
obtained the width of the ground state of 0.000417 a.u.
which is to be compared to 0.000425 a.u. reported in the
paper [24]. Thus, even for the DC field strengths as large
as 0.15 a.u., our basis provides quite an adequate descrip-
tion of the DC Stark effect.

Having assured validity of the description which our
basis provides for the field-free He atom and the DC Stark
effect, we may proceed to a complete calculation includ-
ing several Floquet blocks in (7). As we mentioned above,
we included in the calculation the Floquet blocks with
n = 0,±1. To make sure that for the AC field strength
considered (of the order of 0.1 a.u.) this choice provides
an adequate approximation, we ran a calculation with
FDC = 0, FAC = 0.1 a.u., retaining in equations (7)
Floquet blocks with n = 0,±1,±2. The composition of
the Floquet blocks was as described above with the dif-
ference, that for the case of FDC = 0 we may leave in the
Floquet blocks with n = 0, n ± 2 only even basis func-
tions, and in the blocks n = ±1 only odd basis functions.
Such calculation gave for the position and width of the
ground state resonance −2.90338569 a.u. and 0.00014714
respectively, which agrees quite well with the data from
the Table 1 obtained with the use of the Floquet blocks
with n = 0,±1.

All results reported below refer to the frequency of
the AC electromagnetic field ω = 111 eV. Our numer-
ical results are listed in the Tables 1 (ground state)
and 2 (excited states). To test the accuracy of these re-
sults, we performed a separate calculation retaining the
Floquet blocks with n = 0, n ± 1, n ± 2 in system (7).
The composition of each Floquet block in this calculation
was as described above. Such calculation, performed for
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Table 1. Energy and width (in a.u.) of the 1s2 1S state of the
helium atom in the presence of DC and AC electric fields (field
strengths in a.u., ω = 111 eV).

1s2 1S
FDC E Γ

FAC = 0.1

0 −2.9033858 1.4708-4
0.05 −2.9051265 1.4683-4
0.1 −2.9105049 1.4675-4
0.15 −2.9202165 5.6224-4

FAC = 0.13

0 −2.9031524 2.4849-4
0.05 −2.9048932 2.4803-4
0.1 −2.9102718 2.4746-4
0.15 −2.9199840 6.5271-4

Table 2. Energy and width (in a.u.) of the 1s2s 1S and
1s2p 1P sates of the helium atom in the presence of DC and
AC electric fields (field strengths in a.u., ω = 111 eV).

1s2s 1S 1s2p 1P
FDC E Γ E Γ

FAC = 0.05

0 −2.1458914 2.68-5 −2.1237419 2.06-4
0.0005 −2.1459910 2.78-5 −2.1236884 2.02-4
0.001 −2.1462856 3.15-5 −2.1234445 2.69-4
0.002 −2.1474064 5.81-5 −2.1225276 5.22-4
0.003 −2.1491111 1.316-4 −2.1211653 9.11-4
0.004 −2.1512526 2.710-4 −2.1195121 1.412-3
0.005 −2.1537179 4.851-4 −2.1177007 2.018-3
0.01 −2.1691494 2.8079-3 −2.1074370 6.7483-3

FAC = 0.1

0 −2.1456444 1.073-4 −2.1235583 7.028-4
0.0005 −2.1457441 1.106-4 −2.1234755 7.229-4
0.001 −2.1460361 1.210-4 −2.1231002 8.639-4
0.002 −2.1471592 1.710-4 −2.1223129 1.0124-3
0.003 −2.1488631 2.738-4 −2.1209489 1.3719-3
0.005 −2.1534658 6.837-4 −2.1174776 2.4209-3

FAC = 0.1 a.u. and FDC = 0.005 a.u. gave −2.1534632 a.u.
and 0.0006848 a.u. (position and width of the 1s2s 1S
state) and −2.1174750 a.u. and 0.0024231 a.u. (position
and width of the 1s2p 1P state). This is to be com-
pared with the results presented in the Table 2. It can
be seen that the difference of these results does not ex-
ceed 5 × 10−6 a.u. For the ground state, variation of the
results with respect to the number of the Floquet blocks
was also found to be within these limits. Combining this
estimate and the estimates presented above for the field-
free case and ordinary DC Stark effect, we adopt the latter
figure as an estimate for the accuracy of the data reported
in the Tables 1, 2 and 3.

Figure 1 gives a graphical representation of the ground
state energy and width as functions of the DC field
strength for two different values of the AC field strength.

Most noticeable feature of this figure is that the width
does not increase (or even decrease) as a function of the

Table 3. Energy and width (in a.u.) of the 1s2s 3S and 1s2p
3P states of the helium atom in the presence of DC and AC
electric fields (field strengths in a.u., ω = 111 eV).

1s2s 3S 1s2p 3P
FDC E Γ E Γ

FAC = 0.05

0 −2.1751464 2.71-5 −2.1330972 1.37-4
0.001 −2.1753039 2.79-5 −2.1330044 2.08-4
0.002 −2.1757721 3.26-5 −2.1327312 4.20-4
0.003 −2.1765385 4.82-5 −2.1322930 7.63-4
0.005 −2.1788889 1.514-4 −2.1310398 1.796-3

FAC = 0.1

0 −2.1748985 1.083-4 −2.1328972 5.379-4
0.001 −2.1750562 1.106-4 −2.1328036 6.084-4
0.002 −2.1755248 1.199-4 −2.1325282 8.172-4
0.003 −2.1762920 1.427-4 −2.1320865 1.157-3
0.005 −2.1786438 2.662-4 −2.1308210 2.179-3

applied DC electric field until the field strength reaches
some critical value (approximately 0.1 a.u.). The corre-
sponding low DC-field value of the total photo-ionization
cross-section, computed with the use of (6), coincides
within a fraction of a percent with the experimental
value [47].

The accuracy of the present calculation does not allow
us to assert that the width indeed appreciably declines
with DC electric field. It does allow us, however, to con-
clude that it remains virtually constant for the DC elec-
tric field strength below 0.1 a.u., starting to grow rapidly
for larger field strengths. Such a behavior is reminiscent
of the widths of doubly-excited resonance states of two-
electron systems in the presence of the DC external field.
It was found, for example, for the doubly excited reso-
nance states in helium [48], negative hydrogen ion [30],
positronium negative ion [49] or molecular hydrogen [31].
For these systems, such a behavior was explained as a
result of a competition of two possible routes of decay
(the autoionizing one and the one due to the presence of
the DC field). In all these systems which are highly cor-
related atomic species, the interference of the two decay
processes may lead to observed decrease of the width as
a function of the DC field strength. It is only for larger
field strengths that the DC field effect becomes dominant
and we find a typical pattern of a monotonous growth of
the width with field (found e.g., for hydrogen atom). It
is quite possible that analogous situation occurs in the
present case where the role of autoionization process is
played by the ionization due to the presence of the AC
field. To make this discussion more precise we should re-
call that for not very large field strengths there are two
distinct processes which can lead to ionization of an atom
by an external electric field. These processes are pertur-
bative multiphoton ionization and tunneling. The third
process, the so-called above barrier ionization, occurs for
the field strengths far larger than those considered in the
paper. Which process plays the major role is determined
by the Keldysh parameter γ [50] which is proportional to
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Fig. 1. Energy (solid line) and width (dashed line) (in a.u.) of the 1s2 1S state of the helium atom as functions of the DC
field strength. The AC field is applied with the frequency ω = 111 eV and the field strength FAC = 0.1 a.u. (left) and 0.13 a.u.
(right).

the frequency of the laser field. The case γ � 1 corre-
sponds to the multiphoton ionization regime whereas in
the opposite case γ � 1 the tunneling regime dominates.
In the present case, both these mechanisms are equally im-
portant. It is easy to see that for the parameters of the AC
field considered in the paper we have γ � 1, hence ioniza-
tion due to AC field proceeds mostly by the multiphoton
ionization process. The DC field ionization, on the con-
trary, proceeds by tunneling. The statement made above
may therefore be reformulated as the following hypothesis.
In some regions of the parameters characterizing the prob-
lem, the interference of these two processes may actually
lead to the decrease of the total ionization width. To cast
this hypothesis into somewhat more quantitative terms,
we could use the so-called Kramers-Henneberger represen-
tation of the equations governing interaction of atom with
the AC field [51–53]. We recall that this representation is
equivalent to the use of the coordinate system oscillat-
ing with the frequency ω of the AC field: r → r + α(t),
where α = FAC cosωt/ω2. Under this transformation the
Hamiltonian operator (1) assumes the form:

ĤKH = T̂ − 2
|r1 − α| −

2
|r2 − α| +

1
|r1 − r2|

+ FDC · (r1 + r2 − 2α), (11)

where T̂ is kinetic energy operator. The right-hand side
of equation (11) is a periodic function of time which can
be expanded as a Fourier series. If we retain in this ex-
pansion only the zero order harmonic, we shall obtain the
so-called effective time-independent Hamiltonian. Clearly,
such an approximation provides a valid picture if AC field
frequency is considerably larger than the characteristic
frequencies of the electron motion. In our problem the
latter quantity can be roughly estimated as 20 eV (the
distance from the ground to the first excited state). Then,
for the AC field frequency of 111 eV which we consider
in the paper, we can presumably use the described above
approximation of the effective time-independent Hamilto-
nian. The DC field ionization in this picture can be viewed
as a tunneling process in the effective potential of this
Hamiltonian. The actual form of this potential may be
quite complicated already for one-electron atoms [54]. As

our results suggest, the tunneling rate in this potential
may vary non-monotonously with the strength of the ap-
plied DC field. On the basis of this picture we may expect
to observe similar behavior for all frequencies consider-
ably larger than the characteristic frequency (20 eV) of
the electron motion.

Another feature to notice for the ground state is that,
as can be seen form Table 1, the level shifts due to AC
and DC fields are opposite in signs so that for stronger
AC fields the ground state level appears to be less shifted
for a given DC field strength.

As far as the excited states are concerned, for the fixed
AC field strength, the positions of the states 1s2s 1S and
1s2p 1P reveal a familiar pattern of the DC Stark effect for
the closely spaced levels. For small values of the DC field
strength we observe the typical avoided crossing behavior.
With increase of the DC field, when DC Stark level shifts
become larger than the energy separation between the lev-
els, we observe a linear Stark effect. This is illustrated in
Figure 2 for FAC = 0.05 a.u.

The overall shapes of the curves do not change appre-
ciably with AC field strength, to save space we present the
plots only for one value of the AC field strength (0.05 a.u.
for the singlets and 0.1 a.u. for the triplets below).

The widths considered as functions of the DC field
strength at a constant AC field strength also exhibit a
typical DC Stark effect behavior growing monotonously
with the DC field strength. As compared to the ground
state, an order of magnitude weaker DC field is required
to cause an appreciable change in the energy parameters
of the excited states. This is not surprising given a much
more diffuse orbitals of the excited states.

3.2 Triplet states

Calculation for the triplet states differed only in minor de-
tails of the composition of the basis. As for singlet states,
to describe each Floquet block in system (7) we used the
split-exponential Hylleraas type basis functions (8) with
L ≤ 5. As for singlets, each of the parameters a, b in
equation (8) was allowed to assume two values: 1 and 0.5,
chosen so to facilitate description of the states 1s2s and
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Fig. 2. Positions and widths (in a.u.) of the 1s2s 1S and 1s2p 1P states as functions of the DC field strength. The AC field
frequency is ω = 111 eV, strength FAC = 0.05 a.u.

Fig. 3. Same as Figure 2 for the 1s2s 3S and 1s2p 3P states. The AC field frequency ω = 111 eV, strength FAC = 0.1 a.u.

1s2p. For each of the Floquet blocks in set (7) we retain
the basis functions of 3Se, 3Po, 3De, 3Fo, 3Ge, 3Ho sym-
metries for which the parameter Nmax in (10) is equal
to 9. Such a choice leads to the following composition of
the basis set for each of the Floquet blocks: 220 3Se, 336
3Po, 78 3De, 70 3Fo, 47 3Ge and 30 3Ho basis functions,
resulting in the total of 781 basis functions for each of the
Floquet blocks. The results for the triplets reported be-
low were obtained with the use of the n = 0,±1 Floquet
blocks in system (7). Overall dimension of the eigenvalue
problem to be solved was 2343. To ensure that such a
basis is adequate for our purposes, we repeated all the
steps, described above for the singlets. For the field-free
case we obtain the following results for the energies of
the states of interest: −2.175229378 a.u. (1s2s 3S) and
−2.133164357 a.u. (1s2p 3P). Comparing these values to
the well-known nonrelativistic results [46] allows us to con-
clude that in the field-free case the basis described above
allows to reach the accuracy of the order of 10−9 a.u. for
the 1s2s 3S state and 10−7 a.u. for the 1s2p 3P state.
Remaining checks (accuracy of the description of the or-
dinary DC Stark effect, stability with respect to the num-
ber of the Floquet blocks, etc.) were performed similarly
to those described in the previous section. We will not,
therefore, enter into the details, and quote only the final
estimate of the accuracy to be of the order of 5×10−6 a.u.
both for positions and widths. The numerical results for
the triplet states are presented in Table 3, and Figure 3.

The energy separation of the triplet resonances is con-
siderably larger than of the singlets. The avoided cross-

ing behavior is, therefore, not so clearly pronounced as
for singlets. The widths of the triplet states exhibit a
monotonous growth with the DC field.

4 Conclusion

We performed a study of the ground and low lying excited
states of the helium atom in the presence of the DC and
AC electric fields. Our theoretical method relies on the
recasting of the time-dependent Schrödinger equation into
the Floquet representation with subsequent application
of the complex rotation method [33]. To this theoretical
foundation we added an efficient technical device — the
Hylleraas basis set. Use of this set allowed us to make
the solution of the present, rather complicated problem
computationally feasible.

The study has been performed for singlet and triplet
ground and low-lying excited states. Behavior of the po-
sitions and widths of the excited 1s2s, 1s2p states is very
similar to the picture observed for the ordinary DC Stark
effect in two-electron systems. For the ground state, we
noticed that until the magnitude of the applied DC field
reaches approximately the magnitude of the AC field, the
DC field has virtually no effect on the width. With some
caution, the observed effect can be described as a decrease
of the width with the DC field.

The technique used in the present work (a combina-
tion of the Hylleraas basis and the Floquet ansatz) al-
lowed us to achieve quite a high accuracy in determining
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energy parameters of a rather complicated system: two-
electron atom placed in external DC and AC fields. Use of
Hylleraas basis allowed us to achieve this accuracy keeping
the problem computationally manageable. The approach
used is of a non-perturbative character and may be ap-
plied to the case of an atom in strong external fields. The
algorithm of the calculation of the matrix elements used
in the present paper allowed us to handle easily states of
quite large angular momenta (states with total angular
momentum L ≤ 5 were included in the present work).

These features may be exploited further. They may
allow us, for example, to describe another interesting phe-
nomenon, the stabilization of two-electron systems in the
presence of a very strong AC electric field [13]. For such
strong fields (field intensities for stabilization to occur in
He was found to be of the order of 2 × 1015 W cm−2 [55]
one needs to include a large number of the Floquet blocks
in system (7). Then, the ability of the Hylleraas basis to
represent states of a system with relatively small number
of basis functions may become quite useful.

The authors acknowledge support of the Australian Research
Council in the form of Discovery grant DP0451211. Facilities of
the Australian Partnership for Advanced Computing (APAC)
were used.

Appendix

In this section we give some details of the calculation of
the matrix elements of the Hamiltonian on the Hylleraas
basis. We shall use the greek letters to designate the kets
|N, n1, l1, n2, l2; L〉, given in the coordinate representation
by equation (8).

It is easy to see that for the matrices U and R in
equation (7) calculation of the matrix elements 〈α|Ĉ|β〉,
(where Ĉ is either unit operator for the overlap matrix,
or potential energy operator for the U-matrix), can be re-
duced to the calculation of the overlap matrix elements
of the type 〈α|β′〉, where the numbers N , nj for the
vector β′, may differ from the corresponding numbers
in the state β (e.g., for Coulomb repulsion term in the
Hamiltonian Nβ′

= Nβ − 1).
The calculation of the kinetic energy matrix elements

can be performed quite analogously if one observes that
the following easily derived identity holds for any (suffi-
ciently smooth) function f(r1, r2)

(∆1 + ∆2)|r1 − r2|Nf(r1, r2) =
(

1 − N

2

)
|r1 − r2|N (∆1 + ∆2)f(r1, r2)

+ 2N(N − 2)|r1 − r2|N−2f(r1, r2)

+
N

2
|r1 − r2|N−2(∆1 + ∆2)[(r1 − r2)2f(r1, r2)] (12)

where ∆ is the Laplace operator. Using the fact that for
our basis vectors |N, n1, l1, n2, l2; L〉 the function f(r1, r2)
is a product of two Slater-type functions, it is easy to see
that equation (12) reduces the calculation of matrix ele-

ments of the energy operator in the basis of the vectors
|N, n1, l1, n2, l2; L〉 to calculation of the basic matrix el-
ements 〈Ni, n1i, l1i, n2i, l2i; L|N ′

j, n
′
1j , l1j , n

′
2j , l2j; L〉. The

latter can be calculated analytically with the help of the
following expansion

|r1 − r2|λ = rλ
>

∞∑

n=0

an(α)Pn(cos(θ12)) (13)

where α = r</r>, r< and r> being as usual the larger
and the smaller of the two coordinate vectors r1 and r2

respectively, and

an(α) = 4nαn Γ (n − λ/2)
Γ (−λ/2)

n!
(2n)!

× F (n − λ/2,−λ/2 − 1/2; n + 3/2; α2). (14)

In the last equation F (n − λ/2,−λ/2 − 1/2; n + 3/2; α2)
is a hypergeometric function.

With the help of expansion (13) the basic matrix el-
ements are calculated much the same way as ordinary
Slater integrals (to which they reduce of course if we put
in Eq. (13) λ = −1). The calculation is much simplified
by the fact that for all needed matrix elements the pa-
rameter λ in (13) is an integer satisfying λ = N ≥ −1.
Due to this fact the hypergeometric function in the equa-
tion (14) reduces to a polynomial, allowing thus to perform
radial integrations analytically without lost of precision.
Angular integrations are performed using standard angu-
lar momentum technique. Calculation of the dipole matrix
elements in equation (7) proceeds analogously.

References

1. P.A.M. Gram, J.C. Pratt, M.A. Yates-Williams, H.C.
Bryant, J. Donahue, H. Sharifian, H. Tootoonchi,
Phys. Rev. Lett. 40, 107 (1978)

2. S. Cohen, H.C. Bryant, C.J. Harvey, J.E. Stewart, K.B.
Butterfield, D.A. Clark, J. Donahue, D.W. MacArthur,
G. Comtet, W.W. Smith, Phys. Rev. A 36, 4728 (1987)

3. A.R.P. Rau, H. Wong, Phys. Rev. A 37, 632 (1988)
4. B. Gao, A.F. Starace, Phys. Rev. A 42, 5580 (1990)
5. H. Bachau, F. Martin, J. Phys. B 29, 1451 (1996)
6. T.K. Fang, Y.K. Ho, Phys. Rev. A 60, 2145 (1999)
7. K.T. Chang, T.K. Fang, Y.K. Ho, J. Phys. B 34, 165

(2001)
8. T.K. Fang, K.T. Chang, J. Phys. B 34, 1245 (2001)
9. J.R. Harries, J.P. Sullivan, J.B. Sternberg, S. Obara,

T. Suzuki, P. Hammond, J. Bozek, N. Berrah, M. Halka,
Y. Azuma, Phys. Rev. Lett. 90, 133002 (2003)

10. X.M. Tong, C.D. Lin, Phys. Rev. Lett. 92, 223003 (2004)
11. W.P. Reinhardt, Ann. Rev. Phys. Chem. 33, 223 (1982)
12. A. Buchleitner, B. Gremaud, D. Delande, J. Phys. B 27,

2663 (1994)
13. M. Gavrila, J. Phys. B 35, R147 (2002)
14. P.G. Burke, P. Francken, C.J. Joachain, J. Phys. B 24, 751

(1991)
15. P.G. Burke, V.M. Burke, J. Phys. B 30, L383 (1997)
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